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ON CONTROLLED ROTATION OF AN ELASTIC ROD* 

L.D. AKULENKO and N.N. BOMTNIK 

Plane rotational motions of an elastic rod loaded by a perfectly rigid body and 

acted upon by a controlling moment of forces, are considered. A system of inteqro- 

differential equations with initial and boundary conditions is obtained.Theproblems 

of control are studied, which carried the system from some initial state to a given 

angular state with damping of elastic oscillations or to a state when the system 

rotates as a whole with fixed angular velocity. These formulations appear in the 

course of considering a whole series of practical problems of controllingthesystems 

with elastic constraints such as robots and manipulators, weight lifting machines, 

etc. The asymptotic methods are used to obtain the solutionofthecontrol problems 

stated,closeto the two limiting cases: 1) the case of weightless rod (quasistatic 

approximation) and 2) the case of high flexural rigidity. The problems of dynamics 

and control of oscillating systems with distributed parameters were studied in /l- 

ll/ et al. 

1. Equations of controlled motion of an elastic rod. We consider a mechanical 

system representing an elastic rod of variable cross section able to rotate in a certain plane 

(Fig-l). One end of the rod is fixed (point 0) in the inertial OX'Y'Z space, andaperfectly 

Fig.1 

rigid body G is attached to the other end. The linear dimensions 

of G are assumed to be small compared with the rod length. The 

axis of rotation OZ passes through the point Oin the direction 

perpendicular to the plane of motion, and the controlling force 

moment is applied relative to this axis. To describe the motion 

we introduce the OXYZ -coordinate system rotating in the in- 

ertial space, with the common 0% axis. The OX axisis projected 

along the direction tangent to the neutral line of the rod at the 

point 0. We assume that the motion of the model is described 

within the framework of the linear theory of thin, rectilinear, 

inextensible rods /1,2,9/. The elastic displacements are assumed 

small and perpendicular to the OXaxis coincidingwith theneutral 

line of the undeformed rod. 

We introduce the following notation (some of it is shown in 

Fig.1) : x and s are the abscissas of two points p and .s respect- 

ively, in the moving system OXY, O,< r<s< 2, 1 is the rodlenqth 
and is constant, p (z) is the linear density, pI .< p ,<. (I~, p,,? > 0, 

6 is the Young's modulus, I(z) is the moment of inertia of the 

transverse cross section about the axis perpendicular to the plane of flexure I,,( I < I,, I,,+> 

0, /2/, m is the mass of the body G situated at the rod end (at the point .z -= l), .lI is the 
concentrated moment of control forces about the axis of rotation 02, cp is the angle between 
the OX axis tangent to the elastic axis of the rod at the point 0 and the OX' axis, u(t.r) is 

the displacement of the point on the elastic axis of the rod with coordinate z at the instant 

t.. Depending on the formulation of the control problem the variables M and rp are either 
given or sought functions of t, and u(t,z) is a sought function. 

Let us derive the equations of motion of the mechanical system in question. 

x-the radius vector of the point lying on the OXaxis with abscissa 
We denoteby 

s,. and by u (f, 4 the 
displacement vector of the point z lying on the neutral line of the rod, o,y are, respectively, 
the angular velocity and acceleration of the OXYZ coordinate system relative to the inertial 
OX'Y'Z frame of reference. We have the following coordinate representations for the above 
vectors in the OXYZ system: 

(1.1) 
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where a dot denotes differentiation with respect to time 1. 
Let P be any point of the rod; then r(/.s) _x f u (t~cr) is the radius vector of this 

point at the time !. Let us compute the' total (relative to OX'Y'Z) velocity v =_ r' and 
acceleration w F'. according to the known kinematic principles /l/ 

Y (t, .r) = U$ A 0 > 1', ri = Lit W(l.,r)=u 11 -:- 'i' X I' i 20 ,: Uf - dr, I‘(( == 111, Cl.21 

The subscript 1 denotes a partial derivative with respect to t calculated in the rotating 
OXYZ coordinate system. We derive the equation of relative motion of the points on the 
rod by taking any point p on its neutral line with coordinate s, the radius vector of which 
is r (t, 2) := x + u it, .ri. see (1.1) . Applying an orthogonal cut we divide the rod into two sub- 
systems, OF and PC. Let us find the principal moment Nof the D'Alembert's forces of in- 
ertia acting on the elements of the subsystem PG relative to the point P. Integrating over 
all elements of the rod for XCS<\l, we obtain 

N(t,2)=--jp(sjir(t,s)-r(L,r)J’ x w (t, s ) ds - nz [r (t, 1) - r (t, cc)] x w (t, 1) (1.3) 

According to (l.l.)-- (1.3) the vector N has a nonzero projection on the frz axis only. In 
the linear approximation with respect to u and u,, we obtain 

.\: (t, x) = - i p (s) ((s - x) utt (t. s) + rp” (s - .r) s ds - (1.4) 

x 

‘F-pi (t, 5)s - u (t, s)xj} ds - 

m ((1 - 2) idif (t, I) -t ‘p” (I - .r) 1 cf.2 [m (t, I) - zu (1, r)]} 

Let us now equate the principal moment iv of the D'Alembert's inertia forces (1.4) with 
the moment of "external" elastic forces acting at the cross-section P on the subsystem PG_ 
from the direction of the subsystem OP and taken with the oppositeSign.The momentofelastic 
forces is equal, in accordance with the adopted theory of slight flexure of thin rods, to 

EIKZ, (see /2/, the index. J denotes the corresponding partial derivative). As a result we 
obtain the following integrodifferential relation for all t and O,< r< I : 

H (t, .z) -2 EI (z-)u,, (t. x) cl.51 

Differentiating the identity (1.5) twice with respect to Z, which we assume allowed,weobtain 
the required partial differential equation describing Small elastic deflections of the rod 
u(t, x), relative to the moving OXYZ coordinate system, in the form 

In addition, the function u(1,rc) must satisfy, at every instant of time, the boundary condi- 
tions at x=0 andx .-1 

U (t, 0) = U, (t, 0) = u,, (t, 1) ~~ 0 (1.7) 

E 11 (.r)Uxr (t, Z)lX IX%+ = m (Q1 (t. 1) -+ q"1 ~, 'p-2 Ilu, (t, 1)- 

u (t, 911 

The first two conditions (for s= 0) are obvious; they follow from the propertiesofthe 0XYk 
system and have geometrical character. The third and fourth condition (for x= I) aredynamic 

and follow directly from (1.4), (1.5) and the derivative of (1.5) in 1.. In the casewhenthe 
linear dimensions of the body G,are appreciable (commensurate with the rod length l), the ex- 
pressions given above become more bulky, andthose-of the type (l-3)-- (1.7) more complicated. 
The problem however essentially remains the same. 

To extend the equations of motion of the elastic system for a given external force 
moment M(t), we must supplement the equation (1.6) and boundary conditions (1.7) with the 
equation describing the change of the angular momentum of the whole System rekitive to the 

02 axis and the corresponding boundary conditions. Following the previous arguments, we 

obtain 

i ~(r)[~,"~~ -i- gulf (t, x)] dx : ml [kp" -t utt (t, 1)1 =hf(t) (1.8) i, 

The left-hand side of the integrodifferential equation (1.8) represents the total derivative 
with respect to time t, of the angular momentum of the system relativetotbeaxisofrotation 

0.z (in the linear approximation in u and u!). The angular momentum is calculatedfrom (1.1) 
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and (1.2) in the same manner as (1.4). 
To determine the motion of the system Uniquely, we specify the initial configuration and 

velocity of the points on the neutral line of the rod, as well as the initial valuesof cp and 

V" 

u (0, 5) = f (4, U( (0, 5) : g (x), 0 < I < 1 (1.9) 

(f (0) = f' (0) = O)> 'p (0) = 'PO, 'p' (0) -= 'co' 

Thus we have obtained a system of integrodifferential equations in partial derivatives (1.6), 
(1.8). When the boundary (1.7) and initial (1.9) conditions are taken into account and the 
external momentil/I (t)of the control forces given, the system defines uniquely the motion of 

the mechanical system in question, in the linear approximation with respect to the elastic 

deflection. We note that the quantity u is assumed small (linear theory). The quantities (o", 

q*,di may be sufficiently large (of the order of unity) in some problems of dynamics and con- 
trol. Therefore the control system in question is, generally speaking, essentially nonlinear. 

Next we pose, for the system (1.6)-(1.9), the following problem of rotation of a loaded 
elastic rod with damping of the relative oscillations. To find the admissible control .VE 
K such that the following relations held for all O,<z,( 1 : 

u (T, 2) = Ut (T. x) = 0, ‘p(T) = ‘p*, ‘p’ (T) = 0 (1.10) 

Here Kdenotes a specified fixed set of admissible values of the control, and T is the time 
determined in the course of solving the problem (1.6)- (1.10) from certain additional demands 
(of optimality, etc. ). We note that the value of T must be sufficiently large. This is con- 
nected with the fact that the velocity of wave propagation in an elastic rod is finite /5/. 
Moreover, the time of completion T of the control process must be large since the control 
moment ,Mis assumed small for a rod of finite rigidity, the assumption demanded by the linear 
theory of elasticity. Since the value of T at the same time may be large, the solution of 
the control problem must involve a strict assessment of the retained and neglected terms. From 
(l-6)- (1.8) it follows that the system will remain at rest (1.10) for t> T if we put121~= (J 
or if we "clamp" the rod at an angle 'F*. In the same manner we pose the problem of bringing 
the system to the state of uniform rotation, as a whole, with a given velocity '(.*' and damp- 
ing of the relating oscillations 

u (7,. 2) = ut (T, 5) Ez 0, 'p' (T) =- V*' (1.11) 

It is clear that the system (1.6)- (1.8) admits a solution of the form (1.11). 

2. Approximate approach to investigation of control problems. It is not 
possible to construct an analytic solution to the mixed boundary value problemandthecauchy 
problem (1.6)- (1.9) for the given function Al(t), since the variables cannot be separatedeven 
when the parameters p and I are constant. We note that the problem of motion of a rod under 
load can be studied using an inverse method. First we construct for the given function y(f) -~ 
VP"(i) a solution of the boundary value problem (1.6), (1.7), (1.9) a((.~) , and then use the 
formula (1.8) to compute the value of the control forces moment ‘Jl(t), t =_s [u. Tl required for 
the motion in question. In this approach the function v(t) is regarded as a control chosen 
from the targets of the motion (1.10) or (1.11). The controlled system (l-6)- (1.11) can be 
investigated in approximate manner provided that certain additional assumptions are fulfilled. 
The analysis and solution of the problem is facilitated by using dimensionless variables 
characterising the ratios of certain dimensional physical quantities.Thesedimensionless vari- 
ables can be introduced by various methods, and we shall consider two of these methods. 

lo. We introduce new dimensionless variables as follows: 

t’ zs vt, II’ = u 1, x’ = s I 1, I’ =! : Ior p’ I p , p. (2.1) 

Here v is a characteristic constant with dimension of frequency, I, and pa are the character- 
istic parameters of the problem with dimension of the moment of inertia and linear density 
respectively. As 1, and p0 we can use, for example, e.g., the values of I and I~ averagedover 
the interval 0 <x < 1. The quantities I' and p'in (2.1) are of the order of unity by virtue 
of Sect.1. The choice of the parameter v is governed by the specific features of the problem. 

Let us choose as Y the quantity v = (EI, im13)‘l: characterizing the frequencyof thequasi- 
static oscillations of the system. Then, using the new variables (2.1) we can describe the 
motion by equations with the boundary, initial and final conditions (1.6)- (1.11) where the 
following substitutions should be made: 

l--f 1, m-t 1, f --+ f' = f I 1, g = g’ = g i Iv (2.2) 
'p' + w" = 'p' v, M - M’ = ilf 1 m12v2 1 P+EP’ 
.z = p,l I m 
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In what follows we shall omit the primes for convenience. The representiation (2.2) is con- 
venient for the study of the problems of control in, so called, quasistatic approximationwhen 
the mass of the rod is much smaller than the mass of the body 6.. in this case the problemhas 
a small parameter E< 1. 

We note that the limiting case of E :o (weightless rod) is also extremely interesting, 
and was the subject of a number of theoretical and applied investigations /1,3,9/. A very 
interesting case is that of rotation at thigh angular velocities (~z'>Y) leadinq to consider- 
able increase in the bending strength of the elastic rod /3/, i.e.to increase in the effective 
rigidity. 

Let us therefore consider the problem of control in the quasistatic approximatrion, in 
which we take into account only the motion of the mass G, and the weightless rod is in quasi- 
static equilibrium at any moment of time t> 0 . Putting E == 0,. we obtain the following 
equations and boundary conditions: 

II (5) z&Is, = (F"%,,, 9" + lltf (t, 1) A? II/ (t) (2.3) 

U (& 0) = U, (t, 0) = u,, (t, 1) LT 0 (2.4) 

[I (if IIY-rl.>jl;~, ~7 litt (f, I) I- cp” -I- ‘(I.2 [u, if. 1) - IL f& f)I 

The conditions in the beginning and at the end of the control process for the problem of twist- 
ing and rotation will, respectively, become 

U (0, 1) 1 (I). l/t (0, 1) - g (11, cp (0) =- ‘$0, v” (0) =- RI’ (2.5) 

16 (T, 1) tr,(2', 1) -:I) 

'L‘(T) -= v*, f[‘(T) '- 0 
(2.6) 

'P* (T) q*' (2.7) 

We note that the initial distribution of the points of the weightless rod (0 (x( 1) and of 
their velocities is not important from the point of view of further motion of the body G. 

Let us now pass to solving the control problem (2.3)- (2.7). Integrating the first equa- 
tion of (2.3) with the boundary conditions (2.4) and second relation of (2.3) both t&en into 
account, yield the boundary value problem of the form (y is the deflection of the mass C:from 
the OXaxis) 

I (I)U,:, = '{"U ~'- 5 (n/r -. C$"Y) - ,II (2.8f 

y (t) = U (t. 1). U (t, 0) Y. U, (t. 0) E 0 

Let IY(o, I, S) be the Green's function for the equation 2" :z~ 02i-'z where w is a parameter. Then 
the function sought is 

x 

’ i/ (f, .rf = ! (2.9) 
0 

We note that the function Wcan be constructed usihg a particular solution of the homogeneous 
equation (2.8). To construct a numerical solution of the problem (2.8) it is convenient to 
reduce it to the integral Volterra equation of second kind (t is a parameter) 

(2.101 

The well known method of consecutive approximations in extremely powerful whenthe initial 
approximation is well chosen. In one particular, important from the practical point of view 

case of I -I, -const , we have 

Therefore for the functions f(z) which are nearly constant, the initial approximation can be 

taken in the form (2.9) for which Wis given above. Further, if the approximation i(z)= I0 

(1 - Px) 2 where 1 - fi> 0, p .= const is correct, then the Euler type equation (2.8) can be 

reduced by choosing the independent variable 2 thus: 1 - pz =ei to a linear equation with 

constant coefficients for which the Green's function is constructed exactly as before. Assum- 
ing that the conditions of motion are such that the quantity qp'2 is small, we obtain an approx- 
imate expression for the Green's function Wrr (z - s)/ r(s} which can be utilized in the recur- 

rent scheme of the method of consecutive approximations. 
Substituting the known function u(t, x) computed from (2.9) or (2.10) into the right-hand 

side of (2.8) we obtain, in accordance with (l.S), the expression fox the moment of elastic 

forces. 
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Let us find the elastic deflection y(t) of the body G using (2.9) with .z = 1 

y(t) = --M (t)Q-'(cp'), W = b (cp’) /a (cp’), a > 0, b > 1 
(2.11) 

From (2.11) it follows that the deflection y =0 when M =O. Integrating the secondequation 

of (2.3) with respect to t and taking (2.5) into account, we have 

w.+y.--ho.-g(i)=SfM(r)dr 
(2.12) 

0 

‘p i- Y - lcpo’ + g(l)]~--~-f(l)=~(t-~).l(r) dT 
II 

The relations (2.111, (2.12) obtained yield the solutions of the control problems (2.3)- (2.7) 

in the quasistatic approximation. Thus for the problem of rotation of elastic system as a 

whole with the final condition (2.71, the function ME K twice differentiable in t is such, 

that 
M (0) = -f (l)V(cp,'), M(T) = 0 (2.13) 

M' (0) = -g (1) W (r&') - f (1) R2’ (cp,‘) ‘c” (O), M’ (T) = 0 

is chosen from the condition 
T 

'c*'-Q'-- g(l)+4(t)dl (2.14) 
0 

Similarly, for the problem of rotating into a specified angular position with the final condi- 

tion (2.61, the following relations must hold in addition to (2.13): 

__&g(*)=[ 

T 

.lI (1) tit. ~+-[~O.t-g(l)lT-('I'a-~(l)=j' (T--).ll(l)dt (2.15) 
0 (' 

We note that the initial conditions of particular type (2.13) imposed on the controliunc- 

tion M(t)are stipulated by the degeneracy of the problem at E --0. 

Let tis consider a particular case, important from the practical point of view, of the 
zero initial conditions for the elastic deflections and velocities i(r) = g(x)~Q (see (1.9) and 

(2.5)). Then from (2.91, (2.11) and (2.12) it follows that the relations .UCIJ) == M‘ CO)== 0 must 

hold. A typical form of the control functions M!fi E K is shown in Fig.2 for conditions (2.14) 

(curve 1) and (2.15) (curve 2). We note that in the case of a 

m 
2 

% 

controlled rotational motion of a loaded rod the zero initial con- 

ditions are the most natural choice in the qusistatic approxima- 

7 
tion. This simplification of the problem is caused by the fact 

that when we put M=U at the initial interval, then a rodof low 

t mass will arrive at the state of equilibrium very rapidly (COP 
0 

T pared with the period Zn/Q) ofthequasistatic oscillations), in 

the presence of dissipation which always occurs in practice. 

Let us now consider a relative motion of the body G in the 
case when the motion of the tangent to OX is specified kinemat- 

ically, i.e. (0" is a given function of ','(t) and > is regarded as 

Fig.2 
a control. Then the deflection Y(t) will, in accordance with (2.3) 
and (2.11), be given by 

. . 
Y + Q2 (U')Y 7 ~- s(t), Y (0) =m f(l), y' (0) : g (1) 

C&‘(f) = ‘PO’ .- Y(T) CIT. 
$ 

(2.i6) 
t 

‘F (t) = ‘EO t ‘po’t + 5 (t - T) y (T) dT 
0 

The quantity QZin (2.16) characterizes the oscillation frequency of the mass G. In particular, 
for y= 0, 52 = const we have the equation of a linear oscillator. For a clamped rod (cp'- ':I) 
the value of Q (0)~ ields the frequency of the quasistatic oscillation of a centileverwfthnass 
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m at the end. When in particular case the rod is homogeneous, the function QL (cl') is equai 
to /3/ 

!?(CJJ')= a( u = 1'1" 1 r;’ Q~(ii) = :(I, 

We note that when a - 1, the coefficient accompanying C?'(U) is very nearly equal to unity 
l+a~/15 --.. _ Thus the strengthening effect becomes appreciable at high velocities ,/ ', 

for a2 - IU. 
When the system (2.16) is essentially nonlinear, solution of the problem of control of 

the motion, including the control optimal with respect to some criteria, presents considerable 

difficulties. In case when we can assume that RP 2 Q'((J). we obtain a control problem equival- 

ent to the problem of displacement or acceleration of an oscillator /4,10/. 

Having found the functions v(t) and Y (1) , we substitute them into the second equation 

of (2.3). This yields the magnitude of the control moment jf(t)needed for the realization of 
the motion in question. We can obtaine the solution of the problem of control at P # 0 with 
any prescribed degree of accuracy in E, using the methods of the perturbation theory. In 
this case we must assume a sufficiently high degree of smoothness in the control function 
.?I (t). t E IO. Tl. 

2O. Next we consider the control problem (l-6)- (1.11) in the other limiting case when 

the rigidity of the rod is very high, while the amplitude and period of the natural oscilla- 

tions are essentially small. In this case it is convenient, when passing to the dimensionless 
coordinates in accordance with the formulas (2.1), to take v (I110 J)' 2 where .lfo is acharact- 
eristic quantity with dimension of the moment of forces, e.g. .I/,, ""Pt 1 <I/ (r) I. .I is the 
characteristic quantity with dimension of the moment of inertia of the rod with mass (I. Then 

the quantity v2 will characterize the angular acceleration of rotation of the system as a 

whole. In the new variables the equations of motion (1.6), (1.8) will become (with the primes 

omitted) 

The boundary and initial conditions will now become 

(2.19) 

Depending on the formulation of the problem of control, the conditions at the completion of 

the process will have the form (1.10) or (1.11). We note that in the formulation used here 

!.g and l\must satisfy certain additional requirements (see below). 

We construct the solution using the method of perturbation theory, in the powersofsmall 

parameter n. assuming the function I< (t) to be sufficiently smooth. In the limit (when I_!. 0) 

we have UC (t. s) S 0, (cp")" m: !I[' (f). . The function n{'(L) is obtained from a relation of the type 

(2.14) or (2.15) taken as g -=/SO. Function q' is' also found. Setting 

u = pu1 (t, 5) + 1'1 . ([J $I’ (1) f pq’(1) + p’“. 

1; : MC (t) + /ljLI’ (1) -,- p’ 

and using (2.19) we obtain the following relations for the unknown functions u'.((~. .I/': 

I, (.r)u,,‘Jx, -~ -mu” (f).l$j (.I.) (2.20) 

u’ (t, 0) = ux’ (I, 0) u,, (I, 1) = 0, If (S)lI.Y,‘I,lY 1 % 11 (1) 
I, 1 (0, x) T f (.x). 111 1 (0. .r) g (a) 

Solving the boundary value problem (2.20) for ul, we obtain 

u1 (t? 5) = - 
0 
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.(,)a$ x-s)sp(S)ds+~(1--)--*5+X** 
0 

x*= x xp(x) ax, 5 x** =x “*p(x) dx s 
0 cl 

In this manner we obtain the function u'(t,s) using the zero approximationtothecontrol 

M"(t) corresponding to the problem of control of a perfectly rigid rod. Substituting u1 in- 

to the second equation of (2.20) we obtain an exceptionally simple relation for determining 

the unknown 9' and M'of the form (cp')" $- c r*(t) = M' where is a known constant. By virtue 

of the choice of (p" , the functions 'p' and M'can be arbitrary, but such that the initial and 

final conditions are satisfied, e.g. M'(t)~cM""(t), 'p'=O. We note that the initial distribu- 

tion in (2.20) can be satisfied only when the following relation holds: 

f(x) 3 - M”(0) f =,,; - n (s) ds, g(x) GE - .Zl”’ (0) f e n (s) ds 
0 0 

In particular, if f(z) =g(s)s O,, then the initial conditions hold when ~vl(O) =1%1'(o) =O. For 

t> T we must also put M(t) = 1M'(t)zU. Thus the control problem with terms of the order 

of p taken into account, is solved. 
The smallness of the parameter p in (2.17) and (2.18) can be treated differently, namely, 

assuming the period of the natural oscillations to be of the order of unity, we assume that 

the angular acceleration is low (time of rotation is long). Such an approach does not demand 

the high degree of smoothness of the control function .\1 (0. However, in this case it is 

necessary to solve the control problem with damping of an enumerable number of oscillation 

modes taken into account /S-88/. The corresponding algorithm of the approximate solution can 

be constructed in the form of an expansion in the powers of 
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